Информация к новости
  • Просмотров: 6098
  • Добавил: Natali
  • Дата: 11 марта 2013
11 марта 2013

Лабораторный термометр

Категория: Схемы » Измерительная техника

Лабораторный термометр


Измерение температуры - один из самых насущных видов измерений и в быту, и в работе. Электронный термометр - штука полезная, особенно если он цифровой. Характеристики термометра в первую очередь определяются первичным датчиком температуры, или термопреобразователем. Для краткости будем называть его просто - датчик.

Наиболее популярные виды датчиков приведены в таблице:
Лабораторный термометр


Существуют и более экзотические датчики температуры - манометрические, кварцевые нетермокомпенсированные резонаторы, пирометрические датчики, и ещё другие.
Чаще всего применяются термопары - из-за их дешевизны. Это хорошо для промышленности, когда известна характеристика термопары. Чаще всего используются типа ХА (К) с предельной рабочей температурой +1300оС, и ХК (L) c предельной температурой +850оC. Прочие виды термопар - более дефицитны. Можно и самому сделать простейшую термопару, например, для паяльной станции - взять один провод от держателя нити накала осветительной лампочки, а другой провод - железный или медный, скрутить их концы плоскогубцами - и вуаля- термопара готова, но надёжность такого решения весьма сомнительна, лучше всё-таки сварить концы термопары в газовой горелке. Придётся также самому снимать температурную характеристику этой термопары.

Сейчас мы рассмотрим конструкцию термометра типа RTD. Как уже упоминалось, датчики такого типа обладают наиболее высокой линейностью (или, более точно - монотонностью) и повторяемостью характеристик.
Кстати, стоит заметить, что все справочники перепечатывают одну и ту же информацию о необыкновенно высокой линейности таких датчиков. Но достаточно построить график характеристики, как будет видна её нелинейность. Коэффициент пропорциональности между изменением температуры и приращением сигнала называется коэффициентом Зеебека (или Сибека - кому как нравится). Этот коэффициент наиболее равномерен у датчиков типа RTD. А вот у термопар коэффициент Зеебека может даже менять знак, особенно при широком диапазоне измерения. И чем чувствительнее термопара, тем меньше линейность коэффициента.

Простейший датчик RTD можно сделать, намотав соответствующее количество медной проволоки на оправку. Недостаток такого датчика - предельная рабочая температура, ограниченная +200о С. Гораздо более высокой температурной стойкостью обладают платиновые термометры сопротивления - до +850...+1100о С . Все образцовые термометры и эталоны делаются на их основе. Конечно, сделать тончайшую платиновую проволоку непросто, поэтому стоимость таких датчиков высока. Но сейчас производители научились делать платиновые сопротивления по той же технологии, что и микросхемы - напылением, и стоимость снизилась настолько, что их может купить любой человек.

На первой фотографии можно видеть три вида исполнения датчиков. Слева направо - в керамическом корпусе для измерения высоких температур; бескорпусный датчик, изготовленный по интегральной технологии; датчик для измерения температуры агрессивных сред (корпус сделан из кварцевого стекла); и готовый термометр. Градуировка такого термометра очень проста. Вместо датчика включается образцовый магазин сопротивлений, и выставляется сопротивление, соответствующее измеряемой температуре.
Следует знать, что существует два вида зависимости сопротивления от температуры: группа с W100=1.3850 (стандарт DIN, используется платина чистоты 99,99%) и W100=1,3910 (американский стандарт, в платину добавлены другие элементы платиновой группы). При покупке датчика неплохо бы знать эту зависимость, чтобы правильно калибровать термометр. Номинальное сопротивление изготовляемых платиновых датчиков Rном= 20; 50; 100; 1000 Ом при нуле градусов Цельсия. Сопротивление датчика в зависимости от температуры выражается простой формулой: Rt= Rном * К
В таблице приведены значения нормированного сопротивления К при разной температуре для обоих видов зависимости W100
Лабораторный термометр


Для любительских целей точности этой таблицы вполне достаточно. Точность калибровки будет зависеть только от точности образцового магазина сопротивлений (при калибровке по магазину сопротивлений) или от точности омметра (при отсутствии образцовых сопротивлений).
Сама принципиальная схема достаточна проста. Представлены два варианта исполнения - с датчиком на Rном=100 Ом на два предела измерения +/- 199,9оC и -200...+800оC(первичный датчик не рассчитан на более высокую температуру).
Лабораторный термометр


Здесь:
S1.1 включение питания измерительной схемы
S1.2 включение питания вольтметра
S2.1 переключение диапазона измерения +\- 199,9 градуса Цельсия или +800 - 200 градусов Цельсия.
S2.2 переключение запятой на вольтметре.
R2 подстройка шкалы +800 градусов Цельсия.
R5 подстройка нуля шкалы.

Второй вариант использует датчик на Rном=1000 Ом. Этот вариант - однопредельный +/- 199,9оC , но зато очень экономичный.
Лабораторный термометр


Здесь:
S1.1 вкл. питания измерительной схемы
S1.2 вкл. питания вольтметра
R2 подстройка шкалы +199,9 градусов Цельсия.
R5 подстройка нуля шкалы.

Образцовое стабильное напряжение 2,5 вольта подаётся на неинвертирующие входы ОУ, что превращает ОУ в источники тока. По закону Ома падение напряжения на сопротивлении пропорционально току. Но ток у нас постоянный, и падение напряжения будет зависеть от сопротивления. Источник тока на DA2.1 нагружен на постоянное сопротивление, и поэтому напряжение на выходе ОУ будет постоянным. Источник тока на DA2.2 нагружен на датчик, и напряжение на выходе ОУ будет меняться с температурой. Вольтметр по шкале измерения 0,2 вольта измеряет разность напряжений, прямо пропорциональную температуре. Такое схемное решение позволяет сохранять точность измерения в диапазоне напряжения от 3 до 10 вольт. Следует обратить особое внимание на источник образцового напряжения, поскольку он определяет точность всего термометра. С обычными стабилитронами и даже прецизионными типа TL431 ничего толкового не получится. Надо использовать специальные микросхемы- источники опорного напряжения, например AD680, REF192. Они дороже, но лучше по всем характеристикам, и гораздо экономичнее по току потребления. Однопредельный термометр потребляет 1,5 мА по измерительной цепи, и менее 1 мА по цепи индикации.

Ещё одна особенность схемного решения - раздельные цепи питания измерительной цепи и вольтметра. Вольтметр - готовый модуль с Ж/К индикатором, но ничто не мешает использовать любой другой вольтметр. Главное - цепи питания должны быть раздельные, без гальванической связи. Однопредельный термометр, показанный на фото, питается от двух батареек "Крона".

Резисторы должны быть с 1% допуском от номинала. Если их нет, то подберите по цифровому омметру как можно ближе к номиналу. Подстроечные резисторы - многооборотные типа СП5-22.

Настройка однопредельного термометра с датчиком номинальным сопротивлением 1000 Ом.
Вместо датчика подключите образцовый магазин сопротивлений, желательно класса 0,05. Установите сопротивление 1000,00 Ом - это соответствует температуре 0оC. Регулировкой резистора R5 установите на цифровом индикаторе 0.0. Установите на магазине сопротивление 1754,70 или 1766,60 Ом (в зависимости от характеристики датчика W100); на цифровом индикаторе резистором R2 установите показания +199,9оC .

Настройка двухпредельного термометра с датчиком номинальным сопротивлением 100 Ом немного сложнее. Сначала калибруем по нулевым показаниям индикатора (100,00 Ом на магазине сопротивлений), затем калибруем первый предел измерения +/-199,9 подстройкой опорного напряжения вольтметра (для этого см. принципиальную схему используемого вольтметра), на магазине сопротивлений 176,66 или 175,47Ом; и, наконец, верхний предел измерения температуры - точку +800оC - на магазине сопротивлений 375,51 или 379,72 Ом.
Теперь можно установить на магазине любое табличное сопротивление и на индикаторе прочесть соответствующее значение температуры, или повторить калибровку по другим точкам, например на точках 20 и 80 % полной шкалы. Так мы немного разбросаем погрешность измерения из-за нелинейности датчика по всему диапазону.

Построим график зависимости и соединим конец и начало графика прямой линией. Мы увидим, что примерно посредине наш график имеет максимальное отклонение от прямой линии, и здесь у нас максимальная погрешность измерения со знаком + (рис. а). Теперь переместим прямую параллельно, так, чтобы она касалась нашей экспериментальной кривой в одной точке. Отклонение от прямой сменило знак на минус, и наибольшее отклонение наблюдается на краях диапазона (рис. б). А теперь поместим прямую посредине двух предыдущих положений (рис. в). И - чудо! Отклонение от прямой получилось и со знаком плюс, и со знаком минус, но абсолютная величина отклонения стала почти в два раза меньше!
Вот таким способом можно уменьшить погрешность калибровки при линейной аппроксимации.
Лабораторный термометр


После тарировки не забудьте подключить датчик вместо проверочного сопротивления!


Добавление комментария

Имя:*
E-Mail:*
Введите два слова, показанных на изображении: *

Друзья и партнеры:

Архив новостей

Декабрь 2016 (4)
Ноябрь 2016 (1)
Сентябрь 2016 (3)
Июнь 2016 (1)
Май 2016 (1)
Апрель 2016 (1)
^
 
-->