Информация к новости
  • Просмотров: 9055
  • Добавил: Dedugan
  • Дата: 27 июня 2012
27 июня 2012

Солнечный трекер

Категория: Статьи » Программирование » Arduino

Солнечный трекер - система, предназначенная для слежения за перемещением солнца, чтобы получить максимальный КПД от солнечных батарей.
Концепция трекера предельно проста - по двум датчикам контроллер заставляет серводвигатель поворачивать платформу с солнечной батареей в ту сторону, где больше света.

Домашний прототип рабочего трекера показан на фото ниже:

Солнечный трекер


В проекте используется два датчика-фоторезистора, которые направлены в разные стороны от плоской поверхности на 45°, т.е. относительно друг-друга фоторезисторы сориентированы на 90°. На сами датчики надеты колпачки, чтобы поток света, падающий на них был узконаправленным.

В проекте используется контроллер Arduino. Контроллер периодически считывает значения с двух датчиков и сравнивает их. Если значения с датчиков одинаковы, значит панель наведена на солнце. В случае, если значение одного из датчиков отличается от другого, контроллер дает команду на серводвигатель для поворота платформы. Команда на серво работает до тех пор, пока значения с датчиков не сравняются.

Солнечный трекер


Для предотвращения чрезмерного поворота платформы присутствуют программные лимиты поворота, которые в случае необходимости можно отключить. Также, в коде программы предусмотрена константа deadband, при разности с датчиков меньше значения этой константы, контроллер не будет давать команду на поворот серводвигателя. Т.о. предотвращается дергание платформы (джиттер).
Также, на всякий случай добавлено 2 переменные позволяющие сгладить значения от датчиков. Это помогает отфильтровать "выбросы" и шум.

Скетчи для Arduino

В начальной секции программы описываются подключаемые библиотеки (в нашем случае servo.h), определяются пины и константы

#include <servo.h>
 
//IO Pins
int pinL = 5;              //IO Pin левого фоторезистора
int pinR = 4;              //IO Pin правого фоторезистора
int pinServo = 11;         //PWM pin серво
 
int leftValue = 0;         //Значение левого фоторезистора
int rightValue = 0;        //Значение правого фоторезистора
int error =0;              //Разница между показаниями двух датчиков
int errorAVG = 0;          //Error Average - Rolling 2 Point
 
int deadband = 10;         //Мертвая зона (защита от джиттера)
//Servo Stuff
Servo hServo;              //servo object
int Position = 45;         //Position to write out
 
int minPos = 5;            //Min позиция
int maxPos = 150;          //Max позиция
 
float output = (maxPos - minPos) /2;  //Initial output Position
</servo.h>


В следующей части кода описывается функция Setup(). Данная функция выполняется только один раз при запуске программы или после сброса контроллера. Здесь вы можете вывести в Serial Monitor какие либо данные для отладки, или как в приведенном ниже примере сделать "прогон" серводвигателя по всей траектории до лимитов.

void setup()
{
Serial.begin(9600);
 
hServo.attach(pinServo);
 
//Set Servo to Centre for Alignment Purpose
Serial.println("Перемещение к начальной позиции");
hServo.write(minPos);
delay(5000);
Serial.println("Перемещение к конечной позиции");
hServo.write(maxPos);
delay(5000);
Serial.println("Перемещение к средней точке");
hServo.write(output);
delay(5000);
Serial.println("Going Live................");
}


Финальная часть кода выполняется в циклической функции loop(). Здесь считываются значения с датчиков, производятся все расчеты и выдаются команды на серводвигатель.

void loop()
{
  //Чтение значений с фоторезисторов
   leftValue = analogRead(pinL);
   rightValue = analogRead(pinR);
 
 Serial.print("L = "); Serial.print(leftValue); Serial.print(" | ");
 Serial.print("R = "); Serial.print(rightValue); Serial.print(" | ");
 Serial.print("E = "); Serial.print(error); Serial.print(" | ");
 Serial.print("Eavg = "); Serial.print(errorAVG);
 Serial.println();
 
  //Расчет
 error = leftValue - rightValue;
 errorAVG = (errorAVG + error) / 2;
  
 float newOutput = output + getTravel();
  
 if (newOutput > maxPos)
 {
   Serial.println("At Upper Limit");
   newOutput = maxPos;
 }
 else
 {
   if (newOutput < minPos)
   {
     Serial.println("At Lower Limit");
     newOutput = minPos;
   }
 }
    Serial.println("Writing output");
     
    //Вывод команды управления серво
    hServo.write(newOutput);
    output = newOutput;
}
}


Также, в программе используется вспомогательная функция getTravel(), которая используется для вычисления, куда поворачивать серво - влево, вправо или вообще ничего не делать. Функция просто возвращает значение: 0 - ничего не происходит, -1 поворот влево, +1 поворот право.

int getTravel()
{
  // -1 = Влево; +1 = Вправо
  
 if (errorAVG < (deadband * -1))
 {
   return 1;
 }
 else
 {
   if (errorAVG > deadband)
   {
     return -1;
   }
   else
   {
     //Ничего не делаем
     return 0;
   }
 }
}


Видео работы устройства:



Конечно, это простой солнечный трекер и может служить основой для более сложных устройств. К примеру можно сделать более лучшую фильтрацию входных переменных, добавить ПИД-регулирование, в схему добавить второй сервопривод для перемещения солнечной панели по вертикали и получения максимального КПД.

Вы не можете скачивать файлы с нашего сервера скетч PDE

Источник: http://www.codeproject.com/

Метки к статье: arduino, КПД



Добавление комментария

Имя:*
E-Mail:*
Введите два слова, показанных на изображении: *

Друзья и партнеры:

Архив новостей

Декабрь 2016 (4)
Ноябрь 2016 (1)
Сентябрь 2016 (3)
Июнь 2016 (1)
Май 2016 (1)
Апрель 2016 (1)
^
 
-->